Ich muss einen gleitenden mittleren Filter mit einer Grenzfrequenz von 7,8 Hz entwerfen. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall nutzen Frequenzbereich Filter ndash user19373 Feb 3 16 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort ist, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Amplitudenreaktion des Filters H (omega). Mit ein paar einfachen Manipulationen, können wir, dass in einer einfacher zu verstehen: Das sieht vielleicht nicht leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Begriffe aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Fffs: Der Kehrwert dieser Gleichung ist für große N asymptotisch korrekt und hat etwa 2 Fehler Für N2 und weniger als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 liefert die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpassfilters (Einpol-LPF) mit einer gegebenen -3dB Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). Tatsächlich haben sowohl das MA und das 1. Ordnung IIR LPF -20dBdecade Slope im Stopband (man braucht ein größeres N als das, das in der Figur verwendet wird, N32, um dies zu sehen), während aber MA spektrale Nullen bei FkN und a hat 1f Evelope hat das IIR-Filter nur ein 1f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stopbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basiert auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) ca. N16F2 (N-N3) pi2. Und Ableitung der Kreuzung mit 1sqrt von dort. Ndash Massimo Jan 17 16 um 2: 08Ein einfach zu bedienende digitale Filter Der exponentielle gleitende Durchschnitt (EMA) ist ein Typ von unendlichen Impulsantwort (IIR) Filter, der in vielen eingebetteten DSP-Anwendungen verwendet werden kann. Es benötigt nur wenig RAM und Rechenleistung. Was ist ein Filter Filter kommen sowohl in analogen und digitalen Formen und existieren, um bestimmte Frequenzen aus einem Signal zu entfernen. Ein übliches Analogfilter ist das unten gezeigte Tiefpass-RC-Filter. Analoge Filter zeichnen sich durch ihre Frequenzantwort aus, wie stark die Frequenzen gedämpft (Amplitudengang) und verschoben (Phasengang) sind. Der Frequenzgang kann unter Verwendung einer Laplace-Transformation analysiert werden, die eine Übertragungsfunktion in der S-Domäne definiert. Für die obige Schaltung ist die Übertragungsfunktion gegeben durch: Wenn R gleich 1 Kiloohm und C gleich einem Mikrofarad ist, ist die Betragsantwort unten gezeigt. Beachten Sie, dass die X-Achse logarithmisch ist (jede Markierung ist 10 Mal größer als die letzte). Die y-Achse ist in Dezibel (das ist eine logarithmische Funktion des Ausgangs). Die Grenzfrequenz für diesen Filter beträgt 1000 rad oder 160 Hz. Dies ist der Punkt, bei dem weniger als die Hälfte der Leistung bei einer gegebenen Frequenz vom Eingang zum Ausgang des Filters übertragen wird. Bei der Abtastung eines Signals mit einem Analog-Digital-Wandler (ADC) müssen analoge Filter in eingebetteten Ausführungen verwendet werden. Der ADC erfasst nur Frequenzen, die bis zur Hälfte der Abtastfrequenz liegen. Wenn der ADC beispielsweise 320 Abtastungen pro Sekunde erfasst, wird das Filter (mit einer Grenzfrequenz von 160 Hz) zwischen dem Signal und dem ADC-Eingang platziert, um ein Aliasing zu verhindern (was ein Phänomen ist, bei dem höhere Frequenzen in dem abgetasteten Signal auftreten Niedrigere Frequenzen). Digitale Filter Digitale Filter dämpfen Frequenzen in der Software anstatt analoge Komponenten. Ihre Implementierung beinhaltet das Abtasten der analogen Signale mit einem ADC, wobei dann ein Softwarealgorithmus angewendet wird. Zwei gemeinsame Designansätze für die digitale Filterung sind FIR-Filter und IIR-Filter. FIR Filter Die Finite Impulse Response (FIR) Filter verwenden eine endliche Anzahl von Samples, um den Ausgang zu erzeugen. Ein einfacher gleitender Durchschnitt ist ein Beispiel eines Tiefpass-FIR-Filters. Höhere Frequenzen werden abgeschwächt, da die Mittelung das Signal glättet. Der Filter ist endlich, weil die Ausgabe des Filters durch eine endliche Anzahl von Eingangsabtastwerten bestimmt wird. Als Beispiel addiert ein 12-Punkt-Gleit-Mittelfilter die 12 jüngsten Abtastwerte, dividiert dann durch 12. Die Ausgabe von IIR-Filtern wird durch (bis zu) einer unendlichen Anzahl von Eingangsabtastwerten bestimmt. IIR-Filter Infinite Impulse Response (IIR) - Filter sind eine Art von Digitalfiltern, bei denen der Ausgang theoretisch in jedem Fall durch einen Eingang beeinflusst wird. Der exponentielle gleitende Durchschnitt ist ein Beispiel eines Tiefpass-IIR-Filters. Exponential Moving Average Filter Ein exponentieller gleitender Durchschnitt (EMA) wendet exponentielle Gewichte für jede Stichprobe an, um einen Durchschnitt zu berechnen. Obwohl dies kompliziert scheint, ist die Gleichung, die in der digitalen Filterung Parlance als die Differenzgleichung zur Berechnung der Ausgabe bekannt ist, einfach. In der folgenden Gleichung ist y die Ausgabe x ist die Eingabe und alpha ist eine Konstante, die die Grenzfrequenz festlegt. Um zu analysieren, wie sich dieser Filter auf die Frequenz des Ausgangs auswirkt, wird die Z-Domänenübertragungsfunktion verwendet. Die Amplitudenantwort ist unten für Alpha gleich 0,5 gezeigt. Die y-Achse ist wiederum in Dezibel dargestellt. Die x-Achse ist logarithmisch von 0,001 bis pi. Die Real-Frequenz-Frequenz ordnet der x-Achse zu, wobei Null die Gleichspannung ist und pi gleich der Hälfte der Abtastfrequenz ist. Alle Frequenzen, die größer als die Hälfte der Abtastfrequenz sind, werden gelöscht. Wie erwähnt, kann ein analoges Filter praktisch alle Frequenzen im digitalen Signal unterhalb der halben Abtastfrequenz sicherstellen. Der EMA-Filter ist aus zwei Gründen vorteilhaft in eingebetteten Konstruktionen. Erstens ist es einfach, die Grenzfrequenz einzustellen. Eine Verringerung des Wertes von Alpha verringert die Grenzfrequenz des Filters, wie durch Vergleich der obigen Alpha-0,5-Kurve mit der unten gezeigten Kurve mit alpha 0,1 dargestellt wird. Zweitens ist die EMA einfach zu kodieren und erfordert nur eine geringe Menge an Rechenleistung und Speicher. Die Code-Implementierung des Filters verwendet die Differenzgleichung. Es gibt zwei Multiplikationsoperationen und eine Additionsoperation für jeden Ausgang, der die Operationen ignoriert, die zum Runden von Fixpunktmathematik erforderlich sind. Nur das aktuellste Sample muss im RAM gespeichert werden. Dies ist wesentlich geringer als die Verwendung eines einfachen gleitenden Durchschnittsfilters mit N Punkten, die N Multiplikations - und Additionsoperationen sowie N Samples, die im RAM gespeichert werden sollen, erfordern. Der folgende Code implementiert den EMA-Filter mit 32-Bit-Fixpunkt-Mathematik. Der folgende Code ist ein Beispiel für die Verwendung der oben genannten Funktion. Fazit Filter, sowohl analoge als auch digitale, sind ein wesentlicher Bestandteil eingebetteter Designs. Sie ermöglichen es Entwicklern, unerwünschte Frequenzen zu befreien, wenn sie die Sensoreingänge analysieren. Damit digitale Filter nützlich sind, müssen analoge Filter alle Frequenzen über die Hälfte der Abtastfrequenz entfernen. Digitale IIR-Filter können leistungsstarke Werkzeuge in Embedded-Design, wo Ressourcen begrenzt werden. Der exponentielle gleitende Durchschnitt (EMA) ist ein Beispiel für einen solchen Filter, der in eingebetteten Konstruktionen aufgrund der geringen Speicher - und Rechenleistungsanforderungen gut funktioniert. Frequenzantwort des laufenden Durchschnittsfilters Der Frequenzgang eines LTI-Systems ist die DTFT des Impulses Antwort, Die Impulsantwort eines L-stetigen gleitenden Mittelwertes Da der gleitende Mittelwertfilter FIR ist, reduziert sich der Frequenzgang auf die endliche Summe. Wir können die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen werden nur um einen Faktor von etwa 110 (für den 16-Punkte-gleitenden Durchschnitt) oder 13 (für den vier-Punkte-gleitenden Durchschnitt) gedämpft. Wir können viel besser als das. (1-exp (-iomega)) H8 (18) (1-exp (- & omega; & sub4; (1-exp (-iomega)) (1-exp (-iomega)) (1-exp (& ndash; H16)) Achse (0, pi, 0, 1) Copyright - 2000 - Universität von Kalifornien, Berkeley
Handel Forex durch Inside Day Breakout Strategie Innerhalb Tag ist eine weit verbreitete Trading-Strategie für Wertpapiere mit range-gebundenen Preisbewegungen. Es passt Forex-Handel insbesondere aufgrund der Art der Preisschwankungen in Forex-Märkten beobachtet. Dieser Artikel erklärt innen Tagesausbruchhandel, welche Formen dieses Muster, Eintragaustrittspunkte und was zu betrachten, wenn man diese Strategie versucht. Bedeutung von Inside Day Der innere Tag ist ein Candlestick-Muster aus Intraday-Preise in Bezug auf Open. Hoch. Low und Close (OHLC) Preise. Wenn die heutige OHLC Preisband liegt völlig innerhalb der Grenzen der vorherigen Tage OHLC Preisband, das ist ein Innen-Tag-Muster, auch bekannt als innerhalb Tagesbar. Beachten Sie auch, dass der vorhergehende Tagesstab als Mutterstab bekannt sein kann und der heutige Stab als innerer Stab bezeichnet wird. Einfach gesagt, sollte der heutige höchste Preis niedriger sein als der gestern höchste Preis, und der niedrigste Preis heute...
Comments
Post a Comment